

Congresso Internacional de Corrosão, Integridade, Pintura e Revestimentos Anticorrosivos

How to properly assess protective coating's performance – The importance of intact coating evaluation complementing traditional methods in ISO 12944-9

Anders W. B. Skilbred, PhD

What is performance?

Definition of "performance": "the action or process of performing a task or function"

How we define and measure performance influences the outcome

Proving coating performance

Approvals/certificates do not distinguish the cream of the crop!

- NORSOK M-501
- ISO 12944-6
- ISO 12944-9
- IMO PSPC-WBT MSC.215(82)
- IMO PSPC-COT MSC.288(87)

Differentiated approach Improved assessment methods Differentiated approach

Proving coating performance

Performance indicators for corrosion protective coatings

Coating systems investigated

Single coat	Two coats		
1 x 250 μm Product A	2 x 125 µm Product A		Pric
1 x 250 μm Product B	2 x 125 µm Product B		е С
1 x 250 μm Product C	2 x 125 µm Product C	*	(
1 x 250 μm Product D	2 x 125 µm Product D		

Objectives:

1. Can we differentiate products wrt performance (same product series)?

2. Difference in performance between 1 and 2 coats?

Qualit

Visual assessment after 1440h salt spray (ISO 9227)

JFF

Corrosion creep after 1440h salt spray (ISO 9227)

Visual and corrosion creep after 4200h cyclic ageing (ISO 12944-9 Annex B)

Long term performance = long term testing – right?

- There is a general trend in the industry to move towards longer test exposure durations to account for long term protective performance
- Again, we see very little degradation of the coatings, and again we are left with corrosion creep...
- There is little or no practical use in running long exposures e.g. cyclic ageing

Lab vs. field – are there any correlations?

- Short answer: No!
- Lack of correlation between lab and field has been discussed for more than 60 years
- But, it is not that straight forward
 - There is no correlation when it comes corrosion creep
- Cyclic ageing "punishes" systems with zinc much harder than systems without
- Clear correlation between field and field!

"Corrosion or corrosion creep, that is the question!"

Corrosion creep can be useful to indicate how big of an area you will need to repair if a damage is left to develop for a certain amount of time...

But it is NOT a good performance indicator in terms of how well the overall structure is protected against the environment!

Barrier properties are therefore important also assess

Lafayette - Photo - London. SARAH-BEENHARDT (HAMLET.)

Electrochemical Impedance Spectroscopy (EIS)

EIS provides quantitative data on barrier properties, water uptake, diffusion and corrosion

Improves coating performance assessment

Working

electrode

Reference

electrode

EIS cell

Electrolyte 3.5% NaCl

Differentiation of coating performance - EIS

EIS = the bridge between field and lab?

 Almost identical trends for salt spray and field exposure when EIS is used!

1 x 250 μm

Why is there a mismatch in performance?

	Product A	Product B	Product C	Product D
1 x 250 μm	 Blistering and rusting Very poor barrier property 	 Blistering and rusting Very poor barrier property 	 No visible degradation Excellent barrier property 	 No visible degradation Excellent barrier property
2 x 125 μm	 Low corrosion creep ? Poor barrier property 	 Lowest corrosion creep Poor barrier property 	 Modest corrosion creep Excellent barrier property 	 Modest corrosion creep Excellent barrier property

Why is there a mismatch in performance?

High barrier property and low permeability of seawater – Products C and D

Cathodic <u>and</u> anodic reactions only at or near the scribe

Low barrier property and higher seawater permeability – Products A and B

Electrolytic contact underneath coating – anodic and cathodic reactions spatially separated

Gives artificially lower corrosion creep

Conclusions

- Coatings are predominantly assessed based on corrosion creep results after accelerated exposure testing
- Corrosion creep as a performance indicator is limiting and can even result in misleading conclusions – with obviously poorer coating systems exhibiting lower corrosion creep
- By combining traditional results with EIS characterizations, an improved overall picture of the corrosion protective performance can be achieved

